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Summary

The gravity-drainage and oil-reinfiltration processes that occur in
the gas-cap zone of naturally fractured reservoirs (NFRs) are
studied through single porosity refined grid simulations. A stack
of initially oil-saturated matrix blocks in the presence of connate
water surrounded by gas-saturated fractures is considered; gas is
provided at the top of the stack at a constant pressure under
gravity-capillary dominated flow conditions. An in-house reser-
voir simulator, SIMPUMA-FRAC, and two other commercial
simulators were used to run the numerical experiments; the three
simulators gave basically the same results.

Gravity-drainage and oil-reinfiltration rates, along with aver-
age fluid saturations, were computed in the stack of matrix blocks
through time. Pseudofunctions for oil reinfiltration and gravity
drainage were developed and considered in a revised formulation
of the dual-porosity flow equations used in the fractured reservoir
simulation.

The modified dual-porosity equations were implemented in
SIMPUMA-FRAC (Galindo-Nava 1998; Galindo-Nava et al.
1998), and solutions were verified with good results against those
obtained from the equivalent single porosity refined grid simula-
tions. The same simulations—considering gravity drainage and oil
reinfiltration processes—were attempted to run in the two other
commercial simulators, in their dual-porosity mode and using
available options. Results obtained were different among them
and significantly different from those obtained from SIMPUMA-
FRAC.

Introduction

One of the most important aspects in the numerical simulation of
fractured reservoirs is the description of the processes that occur
during the rock-matrix/fracture fluid exchange and the connection
with the fractured network. This description was initially done in
a simplified manner and therefore incomplete (Gilman and
Kazemi 1988; Saidi and Sakthikumar 1993).

Experiments and theoretical and numerical studies (Saidi and
Sakthikumar 1993; Horie et al. 1998; Tan and Firoozabadi 1990;
Coats 1989) have allowed to understand that there are mecha-
nisms and processes, such as oil reinfiltritation or oil imbibition
and capillary continuity between matrix blocks, that were not
taken into account with sufficient detail in the original dual-poros-
ity formulations to model them properly and that modify signifi-
cantly the oil-production forecast and the ultimate recovery in an
NFR.

The main idea of this paper is to study in further detail the oil
reinfiltration process that occurs in the gas invaded zone (gas cap
zone) in an NFR and to evaluate its modeling to implement it in a
dual-porosity numerical simulator.

We consider the reservoir to be a stack of matrix blocks (sugar
cubes) according to the Warren and Root (1963) conceptual dual-
porosity model, and oil reinfiltration occurs when the oil confined
in the upper blocks is expelled out of matrix blocks through
fractures and it reinfiltrates in the blocks below. This block-to-

block oil flow occurs mainly because of the competition of the
capillary and viscous forces.

In the second part of the paper, we used a single-porosity
simulator to build a fine grid in the space occupied by the stack
of matrix blocks and fractures allocating the particular character-
istics and properties of each medium to the different portions that
these systems occupy in the grid.

The processes that occur during the numerical experiment
were studied. The capillary forces act only on the matrix blocks
with a value of zero in the fractures and the viscous forces are
canceled out through the introduction of a very low gas injection
rate through the top face of the stack; a flow process driven by
capillary and gravity forces only is established in this fashion
(Vicencio-Fuentes 1998; Ortega-Galindo 2000). This is done be-
cause a 100% gas saturation must be guaranteed in the fractures
while maintaining a constant pressure system to avoid a pressure
change that would indicate the action of viscous forces.

In the fine-grid simulation, average gas and oil saturations are
computed as time goes by for each one of the matrix blocks in the
stack. Drainage and reinfiltration rates are computed through each
one of the matrix-block faces and their dependencies on the ma-
trix-block average gas saturations are established. Then the pseu-
dofunctions that are required in the modified dual porosity
formulation are calculated.

For the second part of the study, using the modified dual
porosity simulator SIMPUMA-FRAC, a coarse grid is built with
same dimensions as the single porosity fine grid and the gravity
drainage is simulated by using the matrix-fracture transfer pseu-
dofunctions that had been previously generated. Hence, the mod-
ified-dual-porosity simulator should reproduce the average
behavior observed in the fine grid for the stack of blocks in the
single-porosity model.

A comparison is also made with two commercial simulators in
their single- and dual-porosity formulations and also with what is
claimed to be their gravity drainage options.

Problem Formulation

Let us consider the 3D flow of oil and gas in the presence of
connate water in some part of a NFR made of matrix blocks
surrounded by fractures (Figs. 1a and 1b). Let us consider also
that at time zero in the stack the p (oil or gas phase), pressure
distribution is given by a supposed fluid gravitational equilibrium;
matrix blocks are saturated by oil and connate water; and fractures
are 100% saturated by gas. The reservoir lateral boundaries are
not permeable; the upper and lower boundaries are open to flow
and sources or sinks do not exist in that part of the reservoir. The
zero-flow or impermeable-lateral-boundary condition is the result
of the fluid-flow symmetry, which exists among the matrix blocks
that make up the reservoir (Fig. 1a). Let us consider that the z
direction coincides with the vertical direction and that the grid is
orthogonal, the latter situation implies the gravity force will be
present only in the z flow direction.

Differential Flow Equations

The differential equations that describe the flow of fluids in a
NFR, considering the reinfiltration and gravity drainage are
(Kazemi et al. 1976):

Fracture Flow Equations

Oil:
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r� lo rpo � gorzð Þ½ � þ t�omf þ q�oDmf � q�oRfm ¼ @
@t fboSoð Þ:

(1)

Gas:

r � lg rpg � ggrz
� �

þ Rslo rpo � gorzð Þ
h i

þ t�gmf þ t�omf Rs

þq�gNmf þ q�oDmf Rs

� �
� q�oRfmRs

� �
¼ @

@t
fbgSg þ fboRsSo
� �

:

(2)

Matrix/Fracture Flow Equations

Oil:

� t�omf � q�oDmf þ q�oRfm ¼
@

@t
fboSoð Þm: (3)

Gas:

�t�gmf � t�omf Rs � q�gNmf � q�oDmf Rs

� �
þ q�oRfmRs

� �
¼ @

@t
fbgSg þ fboRsSo
� �

m

0<x< xe; 0<y< ye; 0< z< ze; t > 0: . . . . . . : (4)

Viscous, gravity, and capillary effects are considered in the
development of the multiphase flow gas/oil with connate-water
equations, for matrix and matrix/fractures and for heterogeneities
and anisotropy present in the fractured porous media as well. The
term for matrix-fracture fluid exchange caused by viscous forces,
t�pmf ; p ¼ o; g, is based on the Warren and Root (Warren and

Root 1963; Barenblat et al. 1960) theory extension from mono
phase to

t�pmf ¼ skm
bpmkrpm
mpm

pom � poð Þ: (5)

Note that Eq. 5 considers the pressure difference in the oil phase,
between matrix and fractures for t�pmf , instead of pressure differ-
ence in the gas phase, because capillary pressure effects are taken
into account through the exchange terms for oil gravity drainage
and oil reinfiltration, qoDmf and qoRfm, respectively. These terms
act as sink or source terms in the fracture equations in the entire
space and time domain of the problem (Thomas et al. 1983). The
remaining exchange matrix-fracture terms definitions that appear
in Eqs. 1 through 4 will be described later.

The s coefficient is a shape factor that considers the matrix
block area exposed to fluid exchange between matrix and fractures-
per-volume unit and a characteristic length associated to matrix-
fracture flow (Galindo Nava 1998; Warren and Root 1963; Kazemi
et al. 1976; Thomas et al. 1983; Rodrı́guez de la Garza 1987;
Galindo Nava and Rodrı́guez de la Garza 1998).

The p, oil or gas, phase relative permeabilities for the matrix
are function of matrix gas saturation, Sgm;

krpm ¼ krpmðSgmÞ: (6)

According to Eqs. 1 and 2, there are two equations for fractures
with these unknowns or primary variables: po; pg; So; Sg, hence,
there are four unknowns. The same thing happens for Eqs. 3 and 4,
there are two equations and four unknowns: pom; pgm; Som; Sgm:
Therefore two additional equations are needed for each medium.
In this way, there will be a consistent set of four equations with
four unknowns for each medium and it will be possible to be
solved. The primary variables or unknowns for this case were:
po; Sg; pom; Sgm.

The additional equations needed are the constraint equations
and the capillary pressure equations.

Constraint Equations

So þ Sg þ Swc ¼ 1; (7)

Som þ Sgm þ Swcm ¼ 1: (8)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 1—Single-porosity stack of matrix blocks (a) and dual-porosity stack of matrix blocks with multiphase flow developed by
Kazemi et al. (1976).
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Capillary Pressure Equations

Pcgo Sg
� � ¼ pg � po; (9)

Pcgom Sgm
� � ¼ pgm � pom: (10)

Finite-Difference Flow Equations

The nonlinear partial differential Eqs. 1 through 4 are solved
numerically. For that, they are discretized by employing the fi-
nite-difference method. The flow term in the equations is approxi-
mated by central differences in space and the accumulation terms
are approximated by backward difference in time.

From Eqs. 1 and 2, applying the finite-difference method and
multiplying each side of the equations by Vri;j;k the following
finite-difference flow equations are obtained for oil and gas, cor-
respondingly:

Fracture Flow Equations

D To Dpo�goDDð Þ½ �nþ1i;j;k þ tomf
� �nþ1

i;j;k
þ qoDmf

� �nþ1
i;j;k
� qoRfm

� �nþ1
i;j;kþ1

¼Vri;j;k
Dt

Dt fbo 1�Sg�Swc
� �� �

i;j;k; (11)

D Tg Dpo þ DPcgo � ggDD
� �h inþ1

i;j;k
þD ToRs Dpo � goDDð Þ½ �nþ1i;j;k

þ tgmf
� �nþ1

i;j;k
þ tomf Rs

� �nþ1
i;j;k
þ qgNmf

� �nþ1
i;j;k
þ qoDmf Rs

� �nþ1
i;j;k

� qoRfmRs

� �nþ1
i;j;kþ1

¼ Vri;j;k
Dt

Dt fbgSg þ fbo 1�Sg� Swc
� �� �

i;j;k:

(12)

Matrix/Fracture Flow Equations

� tomf
� �nþ1

i;j;k
� qoDmf

� �nþ1
i;j;k
þ qoRfm

� �nþ1
i;j;k�1

¼ Vri;j;k
Dt

Dt fbo 1� Sg � Swc
� �� �

mi;j;k
; . . . (13)

� tgmf
� �nþ1

i;j;k
� tomf Rs

� �nþ1
i;j;k
� qgNmf

� �nþ1
i;j;k

� qoDmf Rs

� �nþ1
i;j;k
þ qoRfmRs

� �nþ1
i;j;k�1

¼ Vri;j;k
Dt

Dt fbgSg
� þfbo 1� Sg � Swc

� ��
mi;j;k

i ¼ 1; 2; . . . ; I; j ¼ 1; 2; . . . ; J; k ¼ 1; 2; . . . ;K; n ¼ 0; 1; 2; . . . :

(14)

The transmissibility that appears in the finite-difference equations
for fractures is defined for the p, oil or gas phase as,

Tnþ1
px

i�1
2
;j;k

¼ DyjDzk
Dx

i�1
2

0
@

1
Alnþ1px

i�1
2
;j;k

;

Tnþ1
py

i;j�1
2
;k

¼ DxiDzk
Dy

j�1
2

0
@

1
Alnþ1py

i;j�1
2
;k

;

Tnþ1
pz

i;j;k�1
2

¼ DxiDyj
Dz

k�1
2

0
@

1
Alnþ1pz

i;j;k�1
2

(15)

The transmissibility that appears in the flow finite-difference
equations for matrix-fracture that come from Eq. 5 is defined for
the p, oil or gas phase as,

Tnþ1
pmfi;j;k

¼ Vri;j;k s
bpmkmkrpm

mpm

 !
i;j;k

: (16)

For parallelepiped matrix blocks, the shape factor is defined as
follows:

s ¼ 4
1

L2x
þ 1

L2y
þ 1

L2z

 !
: (17)

Relative permeabilities from matrix/fracture flow equations
are evaluated at upstream conditions depending on the way the
matrix blocks and fractures exchange fluids. The pressure depen-
dent functions in these transmissibilities are evaluated at the
existing pressure at the matrix blocks (Galindo-Nava. 1998;
Thomas et al. 1983; Rodrı́guez de la Garza 1987; Galindo-Nava
et al. 1998).

Reinfiltration Pseudofunction

The drainage oil rate at surface conditions is given by:

qoDfmi;j;k
¼ Vri;j;kSgi;j;k q

��
oDfmi;j;k

boi;j;k ; (18)

where q��oDmfi;j;k ¼ q��oDmfi;j;k ðSgmi;j;k
Þ is the matrix-blocks-drainage oil

rate in the gridblock i, j, k at reservoir-conditions-per-bulk-vol-
ume unit, which is a function of matrix blocks gas saturation.
q��oDmfi;j;k is obtained trough fine-grid simulations in a stack of

matrix blocks, as suggested by Tan and Firoozabadi (1995). No-
tice that Sgi;j;k was introduced in the Eq. 18 to account for

the matrix blocks that are really exposed to gravity drainage
when fractures in the i, j, k simulation gridblock are partially filled
with gas.

The reinfiltration oil rate at surface conditions in matrix blocks
in the i, j, k simulation gridblock can be obtained from:

qoRfmi;j;k
¼ Vri;j;k Sgi;j;k q

��
oRfmi;j;k

boi;j;k ; (19)

where q��oRfmi;j;k
is the reinfiltration oil rate at reservoir conditions in

matrix blocks in the i, j, k simulation-gridblock-per-bulk-volume
unit, given by:

q��oRfmi;j;k
¼
� s�RK

�
eo

� �
i;j;k

pomi;j;k
� poi;j;k�1 � goDzð Þ

i;j;k�1
2

� 	
moDzð Þ

i;j;k�1
2

;

(20)

where s�R is the reinfiltration shape factor, defined as the area of
matrix blocks in the simulation gridblock i, j, k exposed to reinfil-

tration per bulk volume unit; and K�eo ¼ K�eo Sgmi;j;k

� �
is the effec-

tive oil reinfiltration pseudopermeability. The reinfiltration

pseudofunction s�RK
�
eo

� �
i;j;k

can be obtained from fine grid simula-

tions in a stack of matrix blocks, as described below.
The net exchange of free gas rate between the matrix blocks

and fractures qgNmfi;j;k because of gravity and capillary effects is:

qgNmfi;j;k ¼ Vri;j;kSgi;j;k q��oDmfi;j;k � q��oRfmi;j;k

� �
bgi;j;k : (21)

The above equation implies that the net oil exchange between
matrix blocks and fractures at reservoir conditions because of
capillary and gravity effects produces an equal exchange of free
gas in the opposite direction.

When the above equations are introduced, the pseudocompo-
nent p exchange rate because of viscous effects, (i.e., because of
the pressure differences between matrix and fractures in Eq. 5) is
modified this way:

tpmfi;j;k ¼ Tpmfi;j;k pom � poð Þi;j;k: (22)

Finite-Difference Equations Linearization:
Newton-Raphson Method

Eqs. 11 through 14 to each one of the i, j, k grid nodes at each time
level n+1 is applied give a nonlinear system with 4IJK equations with
4IJK unknowns, (po, Sg, pom, Sgm)i,j,k, i=1, 2, . . ., I; j=1,2, . . . , J;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .
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k=1, 2, . . . , K, whose solution can be obtained using a full
implicit formulation through Newtonian iteration; hence, the follow-
ing residual functions are defined.

Fracture Flow Equations

Oil:

Fnþ1
oi;j;k
¼ D

h
To

�
Dpo � goDD

�inþ1
i;j;k
þ tomf
� �nþ1

i;j;k
þ qoDmf

� �nþ1
i;j;k

� qoRfm

� �nþ1
i;j;kþ1

�Vri;j;k
Dt

Dt fbo 1� Sg � Swc
� �� �

i;j;k ¼ 0:

(23)

Gas:

Fnþ1
gi;j;k
¼ D Tg Dpg þ DPcgo � ggDD

� �h inþ1
i;j;k

þ D ToRs Dpo � goDDð Þ½ �nþ1i;j;kþ tgmf
� �nþ1

i;j;k
þ tomf Rs

� �nþ1
i;j;k

þ qgNmf

� �nþ1
i;j;k
þ qoDmf Rs

� �nþ1
i;j;k
� qoRfmRs

� �nþ1
i;j;kþ1

� Vri;j;k
Dt

Dt fbgSg þ fbo 1� Sg � Swc
� �� �

i;j;k ¼ 0:

(24)

Matrix/Fracture Flow Equations

Oil:

Fnþ1
omi;j;k

¼� tomf
� �nþ1

i;j;k
� qoDmf

� �nþ1
i;j;k
þ qoRfm

� �nþ1
i;j;k�1

� Vri;j;k
Dt

Dt fbo 1� Sg � Swc
� �� �

mi;j;k
¼ 0

: (25)

Gas:

Fnþ1
gmi;j;k

¼� tgmf
� �nþ1

i;j;k
� tomf Rs

� �nþ1
i;j;k
� qgNmf

� �nþ1
i;j;k

� qoDmf Rs

� �nþ1
i;j;k
þ qoRfmRs

� �nþ1
i;j;k�1

� Vri;j;k
Dt

Dt fbgSg þ fbo 1� Sg � Swc
� �� �

mi;j;k
¼ 0

i ¼ 1; 2; . . . ; I; j ¼ 1; 2; . . . ; J; k ¼ 1; 2; . . . ;K; n ¼ 0; 1; 2; . . .

(26)

First, it can be noticed that residual functions for fractures Fnþ1
pi;j;k

and matrix Fnþ1
pmi;j;k

have in general the following dependency on the

unknowns:

Fnþ1
pi;j;k
¼Fp po;Sg

� �
i;j;k�1; po;Sg

� �
i;j�1;k; po;Sg

� �
i�1;j;k;ðpo;Sg

h �
i;j;k

;

ðpo;SgÞiþ1;j;k; po;Sg
� �

i;jþ1;k; po;Sg
� �

i;j;kþ1;ðpom;SgmÞi;j;k;

pom;Sgm
� �

i;j;kþ1
inþ1

: .............................. : (27)

And

Fnþ1
pmi;j;k

¼ Fpm po; Sg
� �

i;j;k�1; po; Sg
� �

i;j;k
; pom; Sgm
� �

i;j;k

h i
nþ1:

(28)

Note that in Eq. 27 there is an additional term for fractures with
respect to the traditional dual-porosity formulation that inserts
matrix unknowns in the i,j,k+1 node while in the matrix/fracture
flow equations of Eq. 28, there is an additional term that inserts
fracture unknowns in the i,j,k-1 node. The residual functions in
Eqs. 27 and 28 are expanded from a truncated Taylor series that
holds only the lower order terms, an iterative Newton-Raphson
scheme is established to solve the fully implicit finite-difference
flow equations, Eqs. 23 through 26, which leads to the following
system of linear equations:

Fracture Flow Equations

X
lmn

@Fpi;j;k

@polmn


 � nð Þ
dp nþ1ð Þ

olmn
þ @Fpi;j;k

@Sg
lmn

 ! nð Þ
dS nþ1ð Þ

glmn

8<
:

9=
;

þ @Fpi;j;k

@pomi;j;k


 � nð Þ
dp nþ1ð Þ

omi;j;k
þ @Fpi;j;k

@Sgmi;j;k


 � nð Þ
dS nþ1ð Þ

gmi;j;k

þ @Fpi;j;k

@pomi;j;kþ1


 � nð Þ
dp nþ1ð Þ

omi;j;kþ1þ
@Fpi;j;k

@Sgmi;j;kþ1


 � nð Þ
dS nþ1ð Þ

gmi;j;kþ1¼�F nð Þ
pi;j;k

lmn ¼ i; j; k � 1; i; j� 1; k; i� 1; j; k; i; j; k; iþ 1; j; k;

i; jþ 1; k; i; j; k þ 1; p ¼ o; g: . . . . . . . . . . . . . . . . . . . . . : :(29)

Matrix/Fracture Flow Equations

@Fpmi;j;k

@poi;j;k�1


 � nð Þ
dp nþ1ð Þ

oi;j;k�1 þ
@Fpmi;j;k

@Sgi;j;k�1


 � nð Þ
dS nþ1ð Þ

gi;j;k�1

þ @Fpmi;j;k

@poi;j;k


 � nð Þ
dp nþ1ð Þ

oi;j;k
þ @Fpmi;j;k

@Sgi;j;k


 � nð Þ
dS nþ1ð Þ

gi;j;k

þ @Fpmi;j;k

@pomi;j;k


 � nð Þ
dp nþ1ð Þ

omi;j;k
þ @Fpmi;j;k

@Sgmi;j;k


 � nð Þ
dS nþ1ð Þ

gmi;j;k
¼ �F nð Þ

pmi;j;k

i ¼ 1; 2; . . . ; I; j ¼ 1; 2; . . . ; J; k ¼ 1; 2; . . . ;K;

n ¼ 0; 1; 2; 3; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : (30)

Eqs. 29 and 30 now constitute a linear system whose unknowns
are the pressure and saturation matrix and fracture iterative
changes, dpo; dSg; dpom; dSgm

� � nþ1ð Þ
i;j;k

at the iteration level (n+1).
The matrix structure for the system of equations of a normal

ordering generates a heptadiagonal matrix. Taking just one row,
Eqs. 29 and 30 can be written as:

hff 0

hmf 0

" # nð Þ

i;j;k

duf
dum

" # nþ1ð Þ

i;j;k�1
þ fff 0

0 0

" # nð Þ

i;j;k

duf
dum

" # nþ1ð Þ

i;j�1;k

þ cff 0

0 0

" # nð Þ

i;j;k

duf
dum

" # nþ1ð Þ

i�1;j;k
þ aff afm

amf amm

" # nð Þ

i;j;k

duf
dum

" # nþ1ð Þ

i;j;k

þ bff 0

0 0

" # nð Þ

i;j;k

duf
dum

" # nþ1ð Þ

iþ1;j;k
þ eff 0

0 0

" # nð Þ

i;j;k

duf
dum

" # nþ1ð Þ

i;jþ1;k

þ gff gfm

0 0

" # nð Þ

i;j;k

duf
dum

" # nþ1ð Þ

i;j;kþ1
¼ � F

Fm

" # nð Þ

i;j;k

; : : . . . . . . : : : (31)

where hi,j,k, fi,j,k, ci,j,k, ai,j,k, bi,j,k, ei,j,k, and gi,j,k are 2�2 order
submatrix containing the derivatives of the residual functions for
each i, j, k gridblock in the simulation grid with respect to the
unknowns in i, j, k-1; i, j-1, k; i-1, j, k; i, j, k; i+1, j, k; i, j+1, k;
i, j, k+1, respectively. The ff and fm subscripts indicate the frac-
ture residual function derivatives with respect to the fracture and
matrix unknowns, respectively. Similarly, the mf and mm sub-
scripts indicate the matrix residual function derivatives with re-
spect to the fracture and matrix unknowns, respectively. The
subvectors dufi,j,k and dumi,j,k are of order 2 and contain the frac-
ture and matrix unknowns iterative changes for the i,j,k simulation
gridblock. Fi,j,k and Fm,i,j,k are subvectors or order 2 that contain
the oil and gas residual functions for the simulation i, j, k grid-
block for fracture and matrix, respectively.

Eq. 31 can also be written as follows:

Fracture Flow Equations

h
nð Þ
ffi;j;k

du nþ1ð Þ
fi;j;k�1 þ f

nð Þ
ffi;j;k

du nþ1ð Þ
fi;j�1;k þ c

nð Þ
ffi;j;k

du nþ1ð Þ
fi�1;j;k þ a

nð Þ
ffi;j;k

du nþ1ð Þ
fi;j;k

þa nð Þ
fmi;j;k

du nþ1ð Þ
mi;j;k

þ b
nð Þ
ffi;j;k

du nþ1ð Þ
fiþ1;j;k þ e

nð Þ
ffi;j;k

du nþ1ð Þ
fi;jþ1;k

þg nð Þ
ffi;j;k

du nþ1ð Þ
fi;j;kþ1 þ g

nð Þ
fmi;j;k

du nþ1ð Þ
mi;j;kþ1 ¼ �F nð Þ

i;j;k
: (32)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .
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Matrix/Fracture Flow Equations

h
nð Þ
mfi;j;k

du nþ1ð Þ
fi;j;k�1 þ a

nð Þ
mfi;j;k

du nþ1ð Þ
fi;j;k

þ a nð Þ
mmi;j;k

du nþ1ð Þ
mi;j;k

¼ �F nð Þ
mi;j;k

: (33)

Now dumi;j;k
can be solved in terms of dufi;j;k�1 and dufi;j;k from

Eq. 33 as follows:

du nþ1ð Þ
mi;j;k

¼ �h �nð Þ
mfi;j;k

du nþ1ð Þ
fi;j;k�1 � a

�nð Þ
mfi;j;k

du nþ1ð Þ
fi;j;k

� F
�nð Þ
mi;j;k

i ¼ 1; 2; ::; I; j ¼ 1; 2; :::; J; k ¼ 1; 2; :::;K; n ¼ 0; 1; 2; ::: ;

(34)

where

h
�nð Þ
mfi;j;k

¼ a nð Þ
mmi;j;k

� ��1
h

nð Þ
mfi;j;k

; (35)

a
�nð Þ
mfi;j;k

¼ a nð Þ
mmi;j;k

� ��1
a

nð Þ
mfi;j;k

; (36)

F
�nð Þ
mi;j;k

¼ a nð Þ
mmi;j;k

� ��1
F nð Þ
mi;j;k

: (37)

Substituting Eq. 34 in Eq. 32 matrix unknowns from fracture
equations are eliminated and the system of equations is reduced
as in the normal dual-porosity approach. The reduced system is:

h
�nð Þ
ffi;j;k

du nþ1ð Þ
fi;j;k�1 þ f

nð Þ
ffi;j;k

du nþ1ð Þ
fi;j�1;k þ c

nð Þ
ffi;j;k

du nþ1ð Þ
fi�1;j;k þ a

�nð Þ
ffi;j;k

du nþ1ð Þ
fi;j;k

þb nð Þ
ffi;j;k

du nþ1ð Þ
fiþ1;j;k þ e

nð Þ
ffi;j;k

du nþ1ð Þ
fi;jþ1;k þ g

�nð Þ
ffi;j;k

du nþ1ð Þ
fi;j;kþ1 ¼ �F

�nð Þ
i;j;k

i ¼ 1; 2; ::; I; j ¼ 1; 2; :::; J;

k ¼ 1; 2; :::;K; n ¼ 0; 1; 2; . . . (38)

The stars in h*, a*, g*, and F* denote the modified submatrixes
and subvectors that result after Eq. 34 coupling in the Eq. 32.

Reinfiltration Pseudofunction Calculation. In the stack of ma-
trix blocks fine grid simulation under constant pressure condi-
tions, average pressure changes in matrix blocks and surrounded
fractures are monitored, and the average matrix blocks gas satura-
tion changes as well. Oil drainage and reinfiltration rates in each
matrix block of the stack are also computed as a function of the
average matrix gas saturation.

Now under the assumption that the potential gradients in the
oil phase established between fractures in i, j, k-1 node and matrix
blocks in i, j, k node are similar in both fine grid simulation as
well as the dual-porosity formulation, it follows that:

q
��nþ1
oRfmi;j;k

¼� Akkro
LxLyLz


 �nþ1

i;j;k

1

moi;j;k
� �nþ1

Dz
i;j;k�1

2

� pnþ1omi;j;k
� pnþ1oi;j;k�1 � goDzð Þnþ1

i;j;k�1
2

 !
(39)

Therefore, we can calculate:

s�RK
�
eo

� �nþ1
i;j;k
¼ Akkro

LxLyLz


 �nþ1

i;j;k

¼ �
q
��nþ1
oRfmi;j;k

moi;j;k
� �nþ1

Dz
i;j;k�1

2

pnþ1omi;j;k
� pnþ1oi;j;k�1 � goDzð Þnþ1

i;j;k�1
2

 !
: (40)

Through q��oRfmi;j;k
Sgmi;j;k

� �
; we establish the dependency of

s�RK
�
eo

� �
i;j;k

on the average gas saturation of i,j,k matrix block.

Stack of Matrix Block Simulation: Single Porosity Model. Be-
cause the flow in a stack of matrix blocks surrounded by fractures
is symmetrical, the single-porosity model was built considering
only one quarter of the stack of matrix blocks as shown in Fig. 1a.

This domain was discretized through a tridimensional grid
4�4�67 gridblocks in the x, y, z directions, respectively i =
1,2,3,4; j =1,2,3,4; k =1,2, . . .,67, totaling 1,072 gridblocks,
Fig. 1a.

The gridblocks in planes i = 1, j = 1, 2, 3, 4; k = 1,2, ...,67, and
j = 4; i = 1, 2, 3, 4; k =1,2, ...,67, make up the lateral fractures of
the fracture medium. The contiguous gridblocks to matrix grid-
blocks i =2, 3, 4; j =2, 3, 4; in each of the layers k =1, 12, 23,
34, ...,67, as it can be seen in Fig. 1a, corresponds to horizontal
fractures between blocks.

In the experiment to study the oil gravity drainage and oil
reinfiltration, some initial and boundary conditions are set in such
a way that they are representative of these processes. The initial
conditions are that at zero time Som=1-Swc, Sgm=0, in matrix and
Sg=1, So=0 in fractures. For this experiment the Som was 0.8, the
Swcm was 0.2 and there is no water in fractures.

Also because of symmetry the boundary conditions for the
lateral walls of the stack are closed to flow of oil or gas. At the
top face of the stack an extremely low constant gas injection rate
was set, for this case qgi=7 scf/day to prevent any flow by pressure
gradient so that the viscous forces are neglected; at the bottom
face of the stack the boundary conditions set are gas and oil
production at a constant pressure of 995 psia; with this condition
there are not compressibility effects in the matrix and flow is
dominated by capillary and gravity forces. Then the experiment
is started and the oil gravity drainage and reinfiltration processes
are observed in the stack of matrix blocks through time.

The average gas-saturation results for each one of the six
matrix blocks are presented in Fig. 2 for the three simulators,
SIMPUMA-FRAC and the two commercial simulators. In Fig. 2
it can be seen the three simulators give equivalent results for the
single-porosity simulation. Block 1 is the one at the top of the
stack while Block 6 is at the bottom of the stack.

Figs. 3 and 4 exhibit the drainage and reinfiltration pseudo-
function curves obtained by the SIMPUMA-FRAC simulator in
its single-porosity formulation for this stack of six matrix blocks
as a function of the average matrix gas saturation, which are
introduced later in the same simulator but with the modified
dual-porosity formulation.

Flow Simulations in the Stack: Modified Dual
Porosity Simulator

The problem is transformed from a 1,072-gridblock single-porosi-
ty simulation to an equivalent six-gridblock dual-porosity simula-
tion with the same initial and boundary conditions set for the
single-porosity simulation; then the SIMPUMA-FRAC is run in
its modified dual-porosity mode. The two other commercial simu-
lators are also run in their dual-porosity formulation for gravity
drainage.

The dimensions for the single- and dual-porosity simulations
are shown in Fig. 1.

The petrophysical properties are converted from single porosity
to the equivalent dual-porosity properties (Thomas et al. 1983;
Gilman and Kazemi 1983; Ladrón de Guevara-Torres 2006;
Galindo Nava and Rodrı́guez de la Garza 1998):

fme ¼ fmVm

VT
¼ 0:119725

ffe ¼ Vf

VT
¼ 0:002288

kfe ¼ km þ kfffe ¼ 1:6516 darcies

Fig. 5 shows the SIMPUMA-FRAC simulator results in its mod-
ified dual-porosity formulation compared to the single-porosity
results. In Fig. 5, a good agreement between both single- and
dual-porosity simulation runs, except at early time for the lower
blocks. This disagreement is caused by the fact that in the dual-
porosity model, the fractures were not fully saturated with gas at
early times as in the case of the single-porosity model.

Furthermore, for the modified dual-porosity formulation, we
found that there are two important parameters in order to achieve
a good match with the results obtained from the single-porosity

. .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . . . . . . .
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model: gas injection rate on top of the stack and the endpoints of
the drainage and reinfiltration pseudofunction curves at Sg=0, as
shown in Figs. 6 and 7. Regarding the gas-injection rate, a com-
promise had to be made between keeping the flow in the stack
dominated by gravity and capillary forces as well as the vertical
fractures fully saturated with gas, a condition that was not fulfilled
at early times (where the mismatch can be seen in Fig. 5). Notice
in Figs. 3 and 4 that the endpoint of the pseudocurves at Sg = 0 are
not well defined and had to be extrapolated for these curves to be
used in the dual porosity model, as seen in Figs. 6 and 7.

Finally, Figs. 8 and 9 show the dual-porosity results obtained
with the commercial simulators using their own gravity-drainage
option and the comparison with their own single-porosity simula-
tions. As can be seen, there is a big disagreement between results.

Conclusions

1. A modification was done to the traditional dual-porosity for-
mulation and was included in an in-house dual-porosity simu-
lator, SIMPUMA-FRAC, to take into account oil gravity

drainage and reinfiltration in NFR. This modification consisted
of adding fluid exchange terms between the matrix and frac-
tures in the flow equations to take into account these processes.

2. The modified dual-porosity SIMPUMA-FRAC simulator solu-
tion was verified with the one obtained with the single-porosity
model and achieved a good agreement between results.

3. A test was designed for the modified dual-porosity model
through a stack of matrix blocks originally oil and connate
water saturated surrounded by fractures filled with gas getting
the solution from a single-porosity model.

4. It was found by comparing the results that the SIMPUMA-FRAC
response was much better than the two commercial simulators in
the equivalent versions for oil drainage and reinfiltration.

5. It was shown that effectively the oil flow in a stack of oil
saturated matrix blocks surrounded by fractures filled with gas
is a local oil exchange process from an upper to a lower block
through the horizontal fracture planes, even when there is no
capillary continuity with a negligible contribution to the frac-
ture lateral planes.

Fig. 2—Average gas saturation for each one of the six matrix blocks.

Fig. 3—Reinfiltration pseudofunction vs. average gas saturation for the stack of six matrix blocks in the SIMPUMA-FRAC simulator.
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Nomenclature

b = 1/B : inverse of the volume factor, cm3 @ cs/cm3

@ cy

cs = standard conditions

cy = reservoir conditions

D = datum, cm

F = residual function in the Newton-Raphson method

k = matrix permeability, Darcy

kr = relative permeability, fraction

Lf = fracture length, cm

Ll = length of the simulation gridblock in l direction or

length of the matrix blocks in l direction, cm
NB = number of blocks

pp = fracture pressure for p pseudocomponent, atm

Pc = fracture capillary pressure, atm

Pcm = matrix capillary pressure, atm

pfondo = pressure at the bottom of the stack (boundary

condition), atm

pmp = matrix pressure for the p, atm
qgNmfi;j;k = net free gas exchange rate because of oil drainage

and reinfiltration at standard conditions, cm3 @ cs/s

q��oDmf = oil drainage rate for matrix blocks to fractures at

reservoir conditions per unit bulk volume, (cm3 @

cy/cm3)/s

qoDmfi;j;k = oil drainage rate for matrix blocks to fractures at

standard conditions, cm3 @ cs/s

Fig. 4—Drainage pseudofunction vs. average gas saturation for the stack of six matrix blocks in the SIMPUMA-FRAC simulator.

Fig. 5—Average gas saturation vs. time for each one of the six matrix blocks.
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q��oRfmi; j; k = oil reinfiltration rate for matrix blocks to fractures

at reservoir conditions per unit bulk volume, (cm3

@ cy/cm3)/s

Rs = solubility ratio of gas in oil, cm3 @ cs/cm3 @ cs

S = saturation, fraction

t = time, s

T = transmissibility, (cm3/s)/(atm)

ue = outer boundary in direction u, cm. u = x, y, z
Vr = bulk volume, cm3

x, y, z = cartesian coordinates

z = vertical depth, cm

▽ = Vector differential operator (nabla symbol)

g = specific weight, gf/cm
3

D = central differences space operator, 1/cm

Dt = regressive differences time operator, 1/s

Dt = time step, s

d = iterative change

l = mobility, (cm3 @ cy/cm3 @ c.s.) darcy/cp

m = viscosity, cp

s = shape factor

Fig. 6—Reinfiltration pseudofunction vs. average gas saturation for the stack of six matrix blocks in the SIMPUMA-FRAC simulator.

Fig. 7—Drainage pseudofunction vs. average gas saturation for the stack of six matrix blocks in the SIMPUMA-FRAC simulator.

June 2009 SPE Reservoir Evaluation & Engineering 387



tmf = matrix-fracture exchange rate because of viscous

flow at standard conditions, cm3 @ cs/s

t�mf = matrix-fracture exchange rate because of viscous

flow at standard conditions per bulk volume, (cm3

@ cs/cm3)/s

f = porosity, fraction

Superscript:

n = time level

(v) = iteration level

Subscript:

f = fracture, fractures

ff = fracture residual function derivatives with respect to the

fracture

fm = fracture residual function derivatives with respect to

matrix unknowns

g = gas

i, j, k = the ith, jth, kth block or ith, jth, kth gridcell

m = matrix

mf = matrix residual function derivatives with respect to the

fracture

Fig. 8—Average gas saturation vs. time for each one of the matrix blocks for the commercial Simulator E in dual- and single-
porosity mode.

Fig. 9—Average gas saturation vs. time for each one of the matrix blocks for the commercial Simulator A in dual- and single-
porosity mode.
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mm = matrix residual function derivatives with respect to the

matrix unknowns

o = oil

p = gas or oil pseudocomponent

U = number of gridblocks in the x,y,z direction. U = IJK
w = water in fractures

wc = connate water in matrix
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SI Metric Conversion Factors

atm � 1.013 250* E + 05 = Pa
cp � 1.0* E – 03 = Pa�s
psi � 6.894 757 E + 00= kPa

*Conversion factor is exact.
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